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The objects of consideration are thin linearly elastic Kirchhoff-Love-type circular cylin-
drical shells having a periodically microheterogeneous structure in circumferential and
axial directions (biperiodic shells). The aim of this contribution is to study a certain long
wave propagation problem related to micro-fluctuations of displacement field caused by
a periodic structure of the shells. This micro-dynamic problem will be analysed in the
framework of a certain mathematical averaged model derived by means of the combined
modelling procedure. The combined modelling applied here includes two techniques:
the asymptotic modelling procedure and a certain extended version of the known toler-
ance non-asymptotic modelling technique based on a new notion of weakly slowly-varying
function. Both these procedures are conjugated with themselves under special conditions.
Contrary to the starting exact shell equations with highly oscillating, non-continuous and
periodic coefficients, governing equations of the averaged combined model have constant
coefficients depending also on a cell size. It will be shown that the micro-periodic het-
erogeneity of the shells leads to exponential micro-vibrations and to exponential waves
as well as to dispersion effects, which cannot be analysed in the framework of the asymp-
totic models commonly used for investigations of vibrations and wave propagation in the
periodic structures.
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1. Introduction

Thin linearly elastic Kirchhoff-Love-type circular cylindrical shells with a period-
ically micro-inhomogeneous structure in circumferential and axial directions are
analysed. In the general case, by periodic inhomogeneity we shall mean here peri-
odically variable shell thickness and periodically variable inertial and elastic prop-
erties of the shell material. Shells of this kind are termed biperiodic. Cylindrical
shells with periodically spaced families of stiffeners as shown in Fig. 1 are typical
example of such shells.

Figure 1 A fragment of a shell with two families of biperiodically spaced ribs

The dynamic problems of periodic shells are described by partial differential equa-
tions with highly oscillating, non-continuous, periodic coefficients. Hence, the direct
application of these equations to investigations of engineering problems is noneffec-
tive. That is why there exists a number of various modelling methods leading to
simplified averaged equations with constant coefficients. Periodic shells (plates)
are usually described using homogenized models derived by means of asymptotic
methods, cf. Lewiński and Telega [1]. It should be also mentioned homogenized
models formulated by means of microlocal parameters, cf. Matysiak and Nagórko
[2], Unfortunately, in the models of this kind the effect of a periodicity cell length
dimensions (called the length-scale effect) on the overall shell behaviour is neglected.

The length-scale effect can be taken into account using the non-asymptotic tol-
erance averaging technique, cf. Woźniak and Wierzbicki [3, 4], Woźniak et al [5, 6].
This technique is based on the concept of tolerance relations between points and
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real numbers related to the accuracy of the performed measurements and calcula-
tions. The tolerance relations are determined by the tolerance parameters. Contrary
to exact equations of theories of microheterogeneous structures (partial differential
equations with functional, highly oscillating, non-continuous coefficients), govern-
ing equations of the averaged tolerance models have coefficients which are constant
or slowly-varying and depend on the period lengths of inhomogeneity. Hence, these
equations make it possible to analyse the length-scale effect.

Some applications of this method to the modelling of mechanical and ther-
momechanical problems for various periodic structures are shown in many works.
The extended list of papers and books on this topic can be found in Woźniak and
Wierzbicki [3], Woźniak et al. [5, 6]. We mention here monograph by Tomczyk [7],
where the length-scale effect in dynamics and stability of periodic cylindrical shells
is investigated, paper by Marczak and Jȩdrysiak [8], where vibrations of periodic
three-layered plates with inert core are studied. In the last years the tolerance
modelling was adopted for mechanical and thermomechanical problems of function-
ally graded structures, e.g. for heat conduction in functionally graded composites
by Nagórko and Woźniak [9], Ostrowski and Michalak [10], for thermoelasticity
of transversally graded laminates by Pazera and Jȩdrysiak [11], for vibrations of
annular plates with longitudinally graded structure by Wirowski [12], for dynam-
ics and stability of functionally graded cylindrical shells by Tomczyk and Szczerba
[13, 14, 15].

A certain extended version of the tolerance modelling technique has been pro-
posed by Tomczyk and Woźniak in [16]. This version is based on a new notion
of weakly slowly-varying functions which is a certain extension of the well known
concept of slowly-varying functions, cf. [3-6]. New mathematical averaged gen-
eral tolerance and combined asymptotic-tolerance models of dynamic problems for
thin shells with either one- or two-directional periodic microstructure in directions
tangent to the shell midsurface, derived by means of the concept of weakly slowly-
varying functions, have been proposed by Tomczyk and Litawska in [17, 18, 19, 20,
21]. The models mentioned above are certain generalizations of the corresponding
standard tolerance and combined asymptotic-tolerance models proposed in [7], which
have been obtained by using the classical concept of slowly-varying functions. Note,
that following [6] and [16], the concepts of weakly slowly-varying and slowly-varying
functions are recalled in Section 3 of this paper.

The aim of this note is to study certain problems of micro-vibrations and of
long wave propagation related to micro-fluctuations of displacement field caused
by a periodic structure of the shells. Note, that we deal with long waves if con-
dition λ/L << 1 holds, where λ is the characteristic length dimension of the cell
and L is the wavelength. These micro-dynamic problems will be analysed in the
framework of the general combined asymptotic-tolerance model proposed in [20].
An important advantage of this model is that it makes it possible to separate the
macroscopic description of the modelling problem from its microscopic description.
It will be shown that the periodic microheterogeneity of the shells leads to expo-
nential micro-vibrations and to exponential waves as well as to dispersion effects,
which cannot be analysed in the framework of the asymptotic models commonly
used for investigations of vibrations and wave propagation in the periodic shells
under consideration. The new wave propagation speed depending on a cell size will
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be obtained. It has to be emphasized that these micro-dynamic problems cannot
be also studied within the standard asymptotic-tolerance model for biperiodic shells
presented in [7].

2. Starting equations

We assume that x1 and x2 are coordinates parametrizing the shell midsurface M
in circumferential and axial directions, respectively. We denote x ≡ (x1, x2) ∈
Ω ≡ (0, L1) × (0, L2), where L1, L2 are length dimensions of M, cf. Fig. 1. Let
O x̄1x̄2x̄3 stand for a Cartesian orthogonal coordinate system in the physical space
R3 and denote x̄ ≡ (x̄1, x̄2, x̄3). A cylindrical shell midsurface M is given by
M ≡

{
x̄ ∈ R3 : x̄ = r̄

(
x1 , x2

)
,
(
x1, x2

)
∈ Ω

}
, where r̄(·) is the smooth function

such that ∂ r̄/∂x1 · ∂ r̄/∂x2 = 0, ∂ r̄/∂x1 · ∂ r̄/∂x1 = 1, ∂ r̄/∂x2 · ∂ r̄/∂x2 = 1.
It means that on M the orthonormal parametrization is introduced. Sub- and
superscripts α, β,. . . run over 1,2 and are related to x1, x2, summation convention
holds. Partial differentiation related to xα is represented by ∂α. Moreover, it is
denoted ∂α...δ ≡ ∂α...∂δ. Let a

αβ stand for the midsurface first metric tensor. The
time coordinate is denoted by t ∈ I = [t0, t1]. Let d(x), r stand for the shell thickness
and the midsurface curvature radius, respectively.

Let λ1 and λ2 be the period lengths of the shell structure respectively in x1-
and x2-directions. The basic cell ∆ and an arbitrary cell ∆(x) with the centre at
point x ∈ Ω∆ are defined by means of: ∆ ≡ [−λ1/2, λ1/2] × [−λ2/2, λ2/2] ⊂ Ω,
∆(x) ≡ x + ∆, x ∈ Ω∆, Ω∆ ≡ {x ∈ Ω : ∆(x) ⊂ Ω∆}. The diameter λ ≡ [(λ1)

2 +
(λ2)

2]1/2 of ∆ is assumed to satisfy conditions: λ/dmax >> 1, λ/r << 1 and
λ/min(L1, L2) << 1. Hence, the diameter will be called the microstructure length
parameter.

Setting z ≡ (z1, z2) ∈ [−λ1/2, λ1/2] × [−λ2/2, λ2/2], we assume that the cell
∆ has two symmetry axes: for z1 = 0 and z2 = 0. It is also assumed that inside
the cell not only the geometrical but also elastic and inertial properties of the shell
are described by symmetric (i.e. even) functions of z ≡ (z1, z2).

Denote by uα = uα(x, t), w = w(x, t), x ∈ Ω, t ∈ I, the shell displacements in
directions tangent and normal to M , respectively. Elastic properties of the shell are
described by shell stiffness tensors Dαβγδ(x), Bαβγδ(x). Let µ(x) stand for a shell
mass density per midsurface unit area. The external forces will be neglected.

The considerations are based on the well-known Kirchhoff-Love theory of thin
elastic shells, cf. Kaliski [22].

It is assumed that the behaviour of the shell under consideration is described by
the action functional determined by lagrangian L being a highly oscillating function
with respect to x and having the well-known form:

L = − 1
2 (D

αβγδ∂βuα∂δuγ + 2
rD

αβ11w∂βuα + 1
r2D

1111ww
+Bαβγδ∂αβw∂γδw − µaαβu̇αu̇β − µẇ2)

(1)

Applying the principle of stationary action we arrive at the system of Euler-Lagrange
equations, which can be written in an explicit form as:

∂β(D
αβγδ∂δuγ) + r−1∂β(D

αβ11w)− µaαβüβ = 0
r−1Dαβ11∂βuα + ∂αβ(B

αβγδ∂γδw) + r−2D1111w + µẅ = 0
(2)
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It can observed that equations (2) coincide with the well-known governing equa-
tions of Kirchhoff-Love theory of thin elastic shells, cf. [22]. For periodic shells,
coefficients Dαβγδ(x), Bαβγδ(x), µ(x) of (1) and (2) are highly oscillating, non-
continuous and λ-periodic functions. Applying the combined asymptotic-tolerance
modelling technique to lagrangian (1), the averaged model equations with con-
stant coefficients depending also on a cell size were derived in [20]. The combined
modelling under consideration includes two techniques: the consistent asymptotic
modelling procedure given in [6] and an extended version of the known tolerance
non-asymptotic modelling technique based on a new notion of weakly slowly-varying
function proposed by Tomczyk and Woźniak in [16]. Here, the model equations
formulated in [20] will be used to investigation of the long wave propagation in
biperiodic shells under consideration. To make the analysis more clear, in the next
section this model will be reminded, following [20]. Moreover, the basic concepts
and assumptions of the extended tolerance modelling technique and of the consistent
asymptotic approach will be outlined, following [6, 16].

3. Modelling procedure. General asymptotic-tolerance model

The combined modelling technique under consideration is realized in two steps.
The first step is based on the consistent asymptotic procedure [6]. The second
one is realized by means of the extended version of the tolerance non-asymptotic
technique [16].

3.1. Step 1. Consistent asymptotic model equations

The fundamental concepts of the consistent asymptotic procedure are those of an
averaging operation and fluctuation shape functions. Below, the mentioned above
concepts will be specified with respect to two-dimensional region Ω ≡ (0, L1) ×
(0, L2) defined in this contribution.

Let f(x) be a function defined in Ω̄ ≡ [0, L1] × [0, L2], which is integrable and
bounded in every cell ∆(x), x ∈ Ω∆. The averaging operation of f(·) is defined by:

< f > (x) ≡ 1

|∆|

∫
∆(x)

f(z)dz z ∈ ∆(x) x ∈ Ω∆ (3)

It can be seen that if f(·) is ∆-periodic then < f > is constant.

Let ∂ stand for gradient operator in Ω; ∂ = (∂1, ∂2), ∂α = ∂/∂xα, α = 1, 2. De-
note by ∂k the k-th gradient in Ω. Let h(·) be a λ-periodic rapidly oscillating func-
tion defined in Ω̄, which is continuous together with gradients ∂kh, k = 1, ..., R−1,
and has a piecewise continuous (or in special cases continuous) bounded gradient
∂Rh. Nonnegative integer R is assumed to be specified in every problem under
consideration. Periodic function h(x) will be called the fluctuation shape function
of the R-th kind, h(x) ∈ FSR(Ω,∆), if it depends on λ as a parameter and satisfies
conditions: h ∈ O(λR) , ∂kh ∈ O(λR−k) , k = 1, 2, ..., R , < µh >= 0, where
µ(x) is a shell mass density.

The asymptotic modelling is based on assumption called the consistent asymp-
totic decomposition. It states that the displacement fields occurring in the starting
lagrangian have to be replaced by families of fields depending on small parameter
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ε = 1/m, m = 1, 2, ...and defined in an arbitrary cell. These families of displace-
ments are decomposed into averaged part independent of ε and highly-oscillating
part depending on ε.

We start with the consistent asymptotic averaging of lagrangian (1) under the
consistent asymptotic decomposition of families of displacements uεα(z, t), wε(z, t),
(z, t) ∈ ∆ε × I:

uεα(z, t) ≡ uα(z/ε, t) = u0
α(z, t) + εhε(z)U α(z, t)

wε(z, t) ≡ w(z/ε, t) = w0(z, t) + ε2gε(z)W (z, t)
(4)

where ε = 1/m, m = 1, 2, ..., z ∈ ∆ε(x), ∆ε ≡ (−ελ1/2, ελ1/2)× (−ελ2/2, ελ2/2)
(scaled cell), ∆ε(x) ≡ x+∆ε , x ∈ Ω∆ (scaled cell with a centre at x ∈ Ω∆).

Unknown functions u0
α, Uα in (4) are assumed to be continuous and bounded in

Ω together with their first derivatives. Unknown functions w0,W in (4) are assumed
to be continuous and bounded in Ω together with their derivatives up to the second
order. Unknowns u0

α, w
0and Uα,W are called macrodisplacements and fluctuation

amplitudes, respectively. They are independent of ε. This is the main difference
between the asymptotic approach under consideration and approach which is used
in the known homogenization theory, cf. Bensoussan et al. [23], Jikov et al. [24].

By functions hε(z) ≡ h(z/ε) ∈ FS1(Ω,∆), gε(z) ≡ g(z/ε) ∈ FS2(Ω,∆) in (4)
are denoted λ-periodic highly oscillating fluctuation shape functions depending on
ε. The fluctuation shape functions are assumed to be known in every problem under
consideration. They have to satisfy conditions: h ∈ O(λ), λ∂αh ∈ O(λ), g ∈ O(λ2),
λ∂αg ∈ O(λ2), λ2∂αβg ∈ O(λ2), < µh >=< µg >= 0. It has to be emphasized
that ∂αhε(z) ≡ 1

ε∂αh(z/ε), ∂αgε(z) ≡
1
ε∂αg(z/ε), ∂αβgε(z) ≡

1
ε2 ∂αβg(z/ε).

We substitute the right-hand sides of (4) into (1) and take into account that
under limit passage ε → 0, terms depending on ε can be neglected and every contin-
uous and bounded function of argument z ∈ ∆ε(x) tends to function of argument
x ∈ Ω̄. Moreover, if ε → 0 then by means of a property of the mean value, cf. [24],
the obtained result tends weakly to the function being the averaged form of starting
lagrangian (1) under consistent asymptotic decomposition (4), cf. [7, 20, 21]. Next,
applying the principle of stationary action we arrive at the governing equations of
consistent asymptotic model for the periodic shells under consideration. These equa-
tions consist of partial differential equations for macrodisplacements u0

α, w
0 coupled

with linear algebraic equations for fluctuation amplitudes Uα, W . After eliminating
fluctuation amplitudes from the governing equations by means of:

Uγ = −(G−1)γη[< ∂βhD
βηµϑ > ∂ϑu

0
µ + r−1 < ∂βhD

βη11 > w0]
W = −E−1 < ∂αβgB

αβγδ > ∂γδw
0 (5)

where Gαγ =< ∂βhD
αβγδ∂δh >, E =< ∂αβB

αβγδ∂γδg >, we arrive finally at the
asymptotic model equations expressed only in macrodisplacements u0

α, w
0:

Dαβγδ
h ∂βδu

0
γ + r−1Dαβ11

h ∂βw
0− < µ > aαβü0

β = 0

Bαβγδ
g ∂αβγδw

0 + r−1D11γδ
h ∂δu

0
γ + r−2D1111

h w0+ < µ > ẅ0 = 0
(6)

where:

Dαβγδ
h ≡< Dαβγδ > − < Dαβηχ ∂χh > (G−1)ηζ < ∂χhD

χζγδ >
Bαβγδ

g ≡< Bαβγδ > − < Bαβµζ∂µζg > E−1 < ∂µζg B
µζγδ >

(7)
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Since displacement fields uα(x, t), w(x, t) have to be uniquely defined in Ω × I, we
conclude that uα(x, t), w(x, t) have to take the form:

uα(x, t) = u0
α(x, t) + h(x)Uα(x, t)

w(x, t) = w0(x, t) + g(x)W (x, t) (x, t) ∈ Ω× I
(8)

with Uα,W given by (5). Tensors Dαβγδ
h , Bαβγδ

g given by (7) are tensors of effective
elastic moduli for the considered composite biperiodic shells.

Equations (6) for macrodisplacements u0
α(x, t), w

0(x, t) together with expres-
sions (5) for fluctuation amplitudes Uα, W and expressions (7) for effective moduli
as well as with decomposition (8) represent the consistent asymptotic model of se-
lected dynamic problems for the thin biperiodic cylindrical shells under considera-
tion.

Coefficients of equations (6) are constant but they are independent of the mi-
crostructure cell size. Hence, this model is not able to describe the length-scale
effect on the overall shell dynamics and it will be referred to as the macroscopic
model.

It has to be emphasized that the macroscopic model obtained here by means
of the general combined modelling coincides with the corresponding macroscopic
model derived by applying the standard combined modelling, cf. [7]. It follows from
the fact that in the first step of both the general and standard combined modelling
procedures there are specifications for neither a weakly slowly-varying function nor
a slowly-varying function.

In the first step of combined modelling it is assumed that within the asymptotic
model, solutions u0

α, w
0 to the problem under consideration are known. Hence, there

are also known functions:

u0α(x, t) = u0
α(x, t) + h(x)Uα(x, t)

w0(x, t) = w0(x, t) + g(x)W (x, t) (x, t) ∈ Ω× I
(9)

where Uα, W are given by means of (5).

3.2. Step 2. Superimposed general tolerance model

The second step of the combined modelling is based on the extended version of the
tolerance modelling technique [16].

The fundamental concepts of the tolerance modelling procedure under consid-
eration are those of two tolerance relations between points and real numbers deter-
mined by tolerance parameters, weakly slowly-varying functions, tolerance-periodic
functions, fluctuation shape functions and the averaging operation, cf. [3-6, 16].
It has to be emphasized that in the classical approach we deal with not weakly
slowly-varying but with more restrictive slowly-varying functions.

Below, the mentioned above concepts and assumptions will be specified with
respect to two-dimensional region Ω ≡ (0, L1)× (0, L2) defined in this contribution.

� Tolerance between points:

Let λ be a positive real number. Points x, y belonging to Ω = (0, L1)× (0, L1)
are said to be in tolerance determined by λ, if and only if the distance between
points x,y does not exceed λ, i.e. ∥x− y∥ ≤ λ.
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� Tolerance between real numbers:

Let δ̃ be a positive real number. Real numbers µ, ν are said to be in tolerance
determined by δ̃, if and only if |µ− ν| ≤ δ̃.

The above relations are denoted by:
λ

x ≈ y, µ
δ̃
≈ ν. Positive parameters λ, δ̃

are called tolerance parameters.

� Weakly slowly-varying functions:

Let F (x) be a function defined in Ω̄ = [0, L1] × [0, L2], which is continuous,
bounded and differentiable in Ω̄ together with their derivatives up to the R-th
order. Nonnegative integer R is assumed to be specified in every problem un-
der consideration. Note, that function F can also depend on time coordinate
t as parameter. Let δ ≡ (λ, δ0, δ1, .., δR) be the set of tolerance parameters.
The first of them is related to the distances between points in Ω, the second
one is related to the distances between values of function F (·) and the k-th one
to the distances between values of the k-th gradient of F (·), k = 1, .., R. We
recall that gradient operator in Ω is denoted by ∂; ∂ = (∂1, ∂2), ∂α = ∂/∂xα,
α = 1, 2, and that ∂k stands for the k-th gradient in Ω. A function F (·)
is called weakly slowly-varying of the R-th kind with respect to cell ∆ and
tolerance parameters δ, F ∈ WSV R

δ (Ω,∆), if and only if:

(∀(x,y) ∈ Ω2)[(x
λ≈y) ⇒ F (x)

δ0≈F (y)

and : (10)

∂kF (x)
δk≈ ∂kF (y) k = 1, 2, ..., R]

Roughly speaking, weakly slowly-varying function F (·) can be treated as con-
stant on an arbitrary cell.

Let us recall that the known slowly-varying function F (x), F ∈ SV R
δ (Ω,∆) ⊂

WSV R
δ (Ω,∆), satisfies not only condition (10) but also the extra restriction:

(∀x ∈ Ω)[λ
∣∣∂kF (x)

∣∣ δk≈ 0 , k = 1, 2, ..., R ] (11)

� Tolerance-periodic functions:

An integrable and bounded function f(x) defined in Ω̄ = [0, L1] × [0, L2],
which can also depend on time coordinate t as parameter, is called tolerance-
periodic with respect to cell ∆ and tolerance parameters δ ≡ (λ, δ0), if for
every x ∈ Ω∆ there exist ∆-periodic function f̃(·) such that f |∆(x)

∩
Domf

and f̃
∣∣∣∆(x)

∩
Dom f̃ are indiscernible in tolerance determined by δ ≡ (λ, δ0).

Function f̃ is a ∆-periodic approximation of f in ∆(x). For function f(·) being
tolerance periodic together with its derivatives up to the R-th order, we shall
write f ∈ TPR

δ (Ω,∆), δ ≡ (λ, δ0, δ1, .., δR).

The concepts of fluctuation shape functions and averaging operation have been
explained in Subsection 3.1.
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The tolerance modelling is based on two assumptions. The first assumption
is called the tolerance averaging approximation. The second one is termed the
micro-macro decomposition.

� Tolerance averaging approximation:

Let f(x) be an integrable periodic function defined in Ω̄ = [0, L1] × [0, L2]
and let F (x) ∈ WSV 1

δ (Ω,∆), G(x) ∈ WSV 2
δ (Ω,∆). The tolerance averaging

approximation has the form:

< f ∂RF > (x) =< f > ∂RF (x) +O(δ) R = 0, 1 ∂0
1F ≡ F

< f ∂RG > (x) =< f > ∂RG(x) +O(δ) R = 0, 1, 2 ∂0
1G ≡ G

(12)

In the course of modelling, terms O(δ) will be neglected. Let us observe
that the weakly slowly-varying functions can be regarded as invariant under
averaging.

We recall that the “classical” slowly-varying functions F (·) ∈ SV 1
δ (Ω,∆),

G(·) ∈ SV 2
δ (Ω,∆) satisfy not only approximations (12) but also the extra

approximate relations:

< f ∂(hF ) > (x) =< f ∂h > F (x) +O(δ)
< f ∂(gG) > (x) =< f ∂g > G(x) +O(δ)
< f ∂2(gG) > (x) =< f ∂2g > G(x) +O(δ)

(13)

where h(·) ∈ FS1(Ω,∆), g(·) ∈ FS2(Ω,∆)

Approximations given above will be applied in the modelling problems dis-
cussed in this contribution. For details the reader is referred to [3-6, 16.]

� Micro-macro decomposition:

The second fundamental assumption, called the micro-macro decomposition,
states that the displacements fields occurring in the starting lagrangian un-
der consideration can be decomposed into unknown averaged (macroscopic)
displacements being weakly slowly-varying functions in x ∈ Ω and highly oscil-
lating fluctuations represented by the known highly oscillating λ-periodic fluc-
tuation shape functions multiplied by unknown fluctuation amplitudes (mi-
croscopic variables) weakly slowly-varying in x.

In the second step of combined modelling we introduce the extra micro-macro
decomposition superimposed on the known solutions u0α, w0 obtained within
the macroscopic model:

ucα(x, t) = u0α(x, t) + c(x)Qα(x, t)
wb(x, t) = w0(x, t) + b(x)V (x, t)

(14)

where fluctuation (microscopic) amplitudes Qα, V are the new weakly slowly-
varying unknowns, i.e. Qα ∈ WSV 1

δ (Ω,∆), V ∈ WSV 2
δ (Ω,∆). Functions c(x)

and b(x) are the new periodic, continuous and highly-oscillating fluctuation
shape functions which are assumed to be known in every problem under con-
sideration. These functions have to satisfy conditions: c ∈ O(λ), λ∂αc ∈ O(λ),
b ∈ O(λ2), λ∂αb ∈ O(λ2), λ2∂αβb ∈ O(λ2), < µc >=< µb >= 0, where µ(·)
is the shell mass density.
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We substitute the right-hand sides of (14) into (1). The resulting lagrangian is
denoted by Lcb. Then, we average Lcb over cell ∆ using averaging formula (3)
and applying the tolerance averaging approximation (12). As a result we obtain
function < Lcb > called the tolerance averaging of starting lagrangian (1) in ∆
under superimposed decomposition (14). Next, applying the principle of stationary
action, under the extra approximation 1 + λ/r ≈ 1, we arrive at the system of
Euler-Lagrange equations for Qα, V , which can be written in an explicit form as:

< Dαβγδ(c)2 >∂βγQδ− < ∂βcD
αβγδ∂γc > Qδ −< µ(c)2 >aαβQ̈β

= r−1 < Dαβ11∂βcw0 > + < Dαβγδ∂δc∂βu0γ >
(15)

< Bαβγδ(b)2 >∂αβγδV + [2 < Bαβγδb∂αβb >− 4< ∂αbB
αβγδ∂βb >]∂γδV

+ < ∂αβbB
αβγδ∂γδb > V+ < µ(b)2 >V̈ = − < Bαβγδ∂γδb∂αβw0 >

(16)

Equations (15) and (16) together with the micro-macro decomposition (14) con-
stitute the superimposed microscopic model. Coefficients of the derived model equa-
tions are constant and some of them depend on a cell size λ (the singly and doubly
underlined terms). The right-hand sides of (15) and (16) are known under assump-
tion that u0α, w0 were determined in the first step of modelling. The basic unknowns
Qα, V of the model equations must be the weakly slowly-varying functions in period-
icity directions, i.e. Qα ∈ WSV 1

δ (Ω,∆), V ∈ WSV 2
δ (Ω,∆). This requirement can

be verified only a posteriori and it determines the range of the physical applicability
of the model.

3.3. General combined asymptotic-tolerance model

Summarizing results obtained above, we conclude that the general combined
asymptotic-tolerance model of selected dynamic problems for the biperiodic shells
under consideration presented here is represented by:

� Macroscopic model defined by equations (6) for macrodisplacements u0
α, w

0

with expressions (5) for fluctuation amplitudes Uα,W , formulated by means of
the consistent asymptotic modelling and being independent of the microstruc-
ture length. Unknowns of this model must be continuous and bounded func-
tions in x.

� Superimposed microscopic model equations (15), (16) for micro-fluctuation
amplitudes Qα, V derived by means of an extended version of the tolerance
(non-asymptotic) modelling and having constant coefficients depending also
on a cell size λ (underlined terms) as well as combined with the macroscopic
model equations (6) under assumption that in the framework of the asymp-
totic model the solutions (9) to the problem under consideration are known.
Unknown micro-fluctuation amplitudes of this model must be weakly slowly-
varying functions in x.

� Decomposition:

uα(x, t) = u0
α(x, t) + h(x)Uα(x, t) + c(x)Qα(x, t)

w(x, t) = w0(x, t) + g(x)W (x, t) + b(x)V (x, t) x ∈ Ω t ∈ I
(17)
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where functions u0
α, Uα, w

0,W have to be obtained in the first step of combined
modelling, i.e. in the framework of the consistent asymptotic modelling.

Coefficients of all equations derived in the framework of combined modelling are
constant in contrast to coefficients in starting equations (2) which are discontinuous,
highly oscillating and periodic in x. Moreover, some of them depend on a cell size
λ. Thus, the combined model can be applied to the analysis of many phenomena
caused by the length-scale effect.

It can be shown, cf. [7], that under assumption that fluctuation shape functions
h(x), g(x) of macroscopic model coincide with fluctuation shape functions c(x),
b(x) of microscopic model, we can obtain microscopic model equations (15), (16)
in which c(·) and b(·) are replaced by h(·) and g(·), respectively, and in which the
right-hand sides are equal to zero:

< Dαβγδ(h)2 >∂βγQδ− < ∂βhD
αβγδ∂γh > Qδ −< µ(h)2 >aαβQ̈β = 0 (18)

< Bαβγδ(g)2 >∂αβγδV + [2 < Bαβγδg∂αβg > − 4< ∂αg B
αβγδ∂βg >]∂γδV

+ < ∂αβg B
αβγδ∂γδg > V+ < µ(g)2 >V̈ = 0 (19)

Equations (18), (19) are independent of solutions u0α, w0 given by means of (9) and
obtained in the framework of the macroscopic model. Hence, they describe selected
problems of the shell micro-dynamics (e.g. the free micro-vibrations, propagation
of waves related to the micro-fluctuation amplitudes) independently of the shell
macro-dynamics.

3.4. Standard combined asymptotic-tolerance model

Let us compare the general combined model proposed here with the corresponding
known standard combined model presented and discussed in [7], which was derived
under assumption that the unknown fluctuation amplitudes Qα(x, t), V (x, t) in
micro-macro decomposition (14) are slowly-varying, i.e. Qα ∈ SV 1

δ (Ω,∆), V ∈
SV 2

δ (Ω,∆) We recall that the main difference between the weakly slowly-varying
and the well-known slowly-varying functions is that the products of derivatives
of slowly-varying functions and microstructure length parameter λ are treated as
negligibly small, cf. (11). Following [7], the standard combined asymptotic-tolerance
model consists of:

� Macroscopic model defined by equations (6) for u0
α, w

0 with expressions (5)
for Uα,W . It is assumed that in the framework of this model the solutions
(9) to the problem under consideration are known.

� Superimposed microscopic model equations (15), (16) without the doubly un-
derlined terms:

< ∂βcD
αβγδ∂γc > Qδ +< µ(c)2 >aαβQ̈β =

= r−1 < Dαβ11∂βcw0 > + < Dαβγδ∂δc ∂βu0γ >
(20)

< ∂αβbB
αβγδ∂γδb > V+ < µ(b)2 > V̈ = − < Bαβγδ∂γδb ∂αβw0 > (21)
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� Decomposition (17), in which the weakly slowly-varying functions Qα(x, t) ∈
WSV 1

δ (Ω,∆), V (x, t) ∈ WSV 2
δ (Ω,∆) are replaced by slowly-varying func-

tions Qα(x, t) ∈ SV 1
δ (Ω,∆), V (x, t) ∈ SV 2

δ (Ω,∆).

From comparison of both the general and the standard combined models it
follows that the general model equations (15), (16) contain a bigger number of terms
depending on the microstructure size than the standard model equations (20), (21).
Thus, the general model proposed here makes it possible to investigate the length-
scale effect in more detail.

It can be observed that within the framework of the general combined model, un-
known fluctuation (microscopic) amplitudesQα(x, t), V (x, t) are governed by partial
differential equations (15), (16), whereas within the framework of the standard com-
bined model these unknowns are governed by ordinary differential equations (20),
(21) involving only time derivatives. Hence there are no extra boundary conditions
for unknowns Qα(x, t), V (x, t) of the standard combined model and that is why
they play the role of kinematic internal variables.

4. Examples of applications

In this section we shall investigate two special micro-dynamic problems. The first
of them deals with harmonic micro-vibrations in axial direction. The second one
deals with propagation of the long waves related to micro-fluctuations of axial dis-
placements.

It has to be emphasized that these aforementioned special micro-dynamic prob-
lems can be studied in the framework of neither the asymptotic models nor standard
combined models for the biperiodic shells under consideration.

4.1. Formulation of the problem

The object of considerations is a closed biperiodically densely stiffened cylindrical
shell with r, L1 = 2πr, L2 as its midsurface curvature radius, circumferential and
axial lengths, respectively, cf. Fig. 1. The stiffened shell under consideration is
treated as a shell with periodically varying thickness d(x) and periodically varying
elastic Dαβγδ(x), Bαβγδ(x) and inertial µ(x) properties. It is assumed that both
the shell and stiffeners are made of homogeneous isotropic materials.

We recall that the microstructure length parameter λ has to satisfy conditions:
λ/dmax >> 1, λ/r << 1 and λ/min(L1, L2) << 1.

It assumed that the fluctuation shape functions are known in the problem under
consideration.

The subsequent analysis will be restricted to general equations of micro-dynamics
(18).

Let the investigated problem be rotationally symmetric with a period λ/r; hence
Q1(·, t) in (18) is equal to zero and the remaining unknown Q2(·, t) of (18) is inde-
pendent of x1. Obviously, fluctuation shape functions h(·) are λ-periodic functions
of both arguments x1 and x2. Hence, the micro-fluctuations uh2(x, t) given by
uh2(x, t) = h(x)Q2(x

2, t) are also functions of x1 and x2.

Now, system of equations (18) obtained by means of the general combined mod-
elling reduces to one equation for Q2(x

2, t) describing the shell’s micro-dynamics in
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axial direction:

< D2222(h)2 >∂22Q2 − (< D2112(∂1h)
2 > + < D2222(∂2h)

2 >)Q2+

−< µ(h)2 >Q̈2 = 0
(22)

The singly and doubly underlined terms in (22) depend on a cell size. Note
that corresponding equation derived by means of the standard combined modelling
has a form of (22) without term including the space derivatives of Q2(x

2, t) (i.e.
without the doubly underlined term).

The subsequent analysis will be based on micro-dynamic equation (22).

4.2. Micro-vibrations

In order to investigate the problem of harmonic micro-vibrations in axial direction
we assume solution to equation (22) in the form:

Q2(x
2, t) = Q∗(x2) cos(ωt) (23)

with ω as a vibration frequency.
Hence, under denotations:

k2 ≡ <D2112(∂1h)
2>+<D2222(∂2h)

2>

λ2<D2222(h̄)2>

ω2
∗ ≡ <D2112(∂1h)

2>+<D2222(∂2h)
2>

λ2<µ(h̄)2>

(24)

where h̄ = λ−1h, h ∈ O(λ), equation (22) yields:

∂22Q
∗(x2)− k2[1− (ω/ω∗)

2]Q∗(x2) = 0 (25)

where ω∗ is referred to as the free micro-vibration frequency depending on a cell size.
It can be shown that averages < D2112(∂1h)

2 >, < D2222(h̄)2 >, < µ(h̄)2 > are
greater than zero; hence k2 > 0 and ω2

∗ > 0. Function Q∗(x2) is a slowly-varying
function of x2. The boundary conditions are assumed in the form Q∗(x2 = 0) = Q0,
Q∗(x2 = L2) = 0, where Q0 is the known arbitrary constant.

The solutions to equation (25) depend on relations between vibrations frequen-
cies ω and ω∗. It means that micro-fluctuation amplitude (23) also depends on
relations between ω and ω∗. Solutions to (25) imply the following special cases of
micro-vibrations:

1. If 0 < ω2 < ω2
∗ and setting k2ω ≡ k2[1− (ω/ω∗)

2] then:

Q2(x
2, t) = Q0[exp(−kωx

2)(1− exp(−2kωL2))
−1

+exp(kωx
2)(1− exp(2kωL2))

−1] cos(ωt)
(26)

In this case micro-vibrations decay exponentially. It can be observed that if
0 < ω2 << ω2

∗ then we can take into account the following approximate form
of solution (26):

Q2(x
2, t) = Q0 exp(−kωx

2) cos(ωt) (27)

From (27) it follows that micro-vibrations are strongly decaying near the
boundary x2 = 0. It means that they can be treated as equal to zero out-
side a certain narrow layer near boundary x2 = 0. Thus, equation (22) being
a starting point in the micro-dynamic problem under consideration makes it
possible to investigate the boundary layer phenomena.
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2. If ω2 = ω2
∗ then:

Q2(x
2, t) = Q0(1− x2/L2) cos(ωt) (28)

we deal with a linear decaying of micro-vibrations.

3. If ω2 > ω2
∗ and κ2 ≡ k2[(ω/ω∗)

2 − 1] ̸= (nπ)2(L2)
−2 then:

Q2(x
2, t) = Q0 sin(κ(L2 − x2))(sin(κL2))

−1 cos(ωt) (29)

micro-vibrations are not decaying, they oscillate.

4. If ω2 > ω2
∗ and κ2 ≡ k2[(ω/ω∗)

2−1] = (nπ)2(L2)
−2 then the solution to equa-

tion (25) does not exist; we obtain resonance micro-vibrations with resonance
frequencies:

ω2
n = ω2

∗[1 + (nπ)2(L2κ)
−2] , n = 1, 2, ... (30)

We recall that these aforementioned special micro-dynamic problem can be studied
in the framework of neither the asymptotic models nor standard combined models
for the biperiodic shells under consideration. It can be observed that within the
asymptotic model after neglecting the length-scale terms, equation (22) reduces to
equation (< D2112(∂1h)

2 > + < D2222(∂2h)
2 >)Q2 = 0, which has only trivial so-

lution Q2 = 0. It can be also seen that the corresponding equation of the standard
combined model has a form of (22) without space derivatives of Q2 (doubly under-
lined term), i.e. form of ordinary differential equation involving the time derivatives
only. The above effects cannot be analysed by using this ordinary differential equa-
tion.

4.3. Wave propagation problem

Now, let the shells under consideration be unbounded along the axial coordinate
x2, cf. Fig. 1. We shall analyse the wave propagation problem. The waves related
to micro-fluctuation amplitude Q2(x

2, t) are taken into account. Hence, equation
(22) describing the shells’ micro-dynamics in an axial direction will be applied. We
look for solution to equation (22) in the form Q2(x

2, t) = F (x2 − ct), where c is the
wave propagation velocity. Setting h̄ = λ−1h, from equation (22) we obtain:

(c2 − c̃2)∂22F + c̄2λ−2F = 0 (31)

where speeds c̃ and c̄ are defined by:

c̃2 ≡ < D2222(h̄)2 >

< µ(h̄)2 >
c̄2 ≡ < D2112(∂1h)

2 > + < D2222(∂2h)
2 >

< µ(h̄)2 >
(32)

Function F (x2, t) is a slowly-varying function of x2. Equation (31) implies the
following special cases of wave propagation in the biperiodic shells under consider-
ation:
(a) sinusoidal waves if c > c̃,
(b) exponential waves if c < c̃,
(c) degenerate case if c = c̃

The above effect cannot be analysed in the framework of asymptotic models and
of standard combined models.
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In order to determine the dispersion relation for the case (a), let us substitute
to equation (22) solution of the form Q2(x

2, t) = A sin(k(x2−ct)), k = 2π/L, where
L and k are the wavelength and the wave number, respectively, A is an arbitrary
constant. It is assumed that L >> λ. The nontrivial solution (A ̸= 0) exists only if:

[(kλ)2c2 − (kλ)2c̃2 − c̄2] = 0 (33)

where under assumption that L >> λ the following condition holds:
kλ = 2πλ/L << 1.
The above equation describes the effect of dispersion. It can be seen that for

kλ → 0 the dispersion effect disappears. From equation (33) it follows that the
dispersive long waves related to micro-fluctuation amplitudeQ2(x

2, t) can propagate
across the unbounded beperiodic shells under consideration with propagation speed:

c2 = c̃2 + c̄2(kλ)−2 (34)

depending on microstructure size λ. Note, that for homogeneous isotropic shells
expression (34) leads to the well-known results c2 = D/µ, D = Eδ/(1− ν2), where
E, ν, δ, µ are Young’s modulus, Poisson’s ratio, the shell thickness and mass density
of the shell material, respectively, cf. Kaliski [22].

4.4. Discussion of results

Analysing results obtained in this section the following remarks can be formulated:

1. The general combined asymptotic-tolerance model for biperiodic shells under
consideration presented here makes it possible to analyse selected problems
of the shells’ micro-dynamics.

2. Harmonic micro-vibrations with micro-vibration frequency ω were analysed.
It was shown that the micro-dynamic behaviour of the shell is different for
different values of vibration frequency ω. The micro-vibrations can decay ex-
ponentially, they can decay linearly, certain values of ω cause a non-decayed
form of micro-vibrations (micro-vibrations oscillate), for certain values of ω
we deal with resonance micro-vibrations. Moreover, the new higher free vibra-
tion frequency ω∗ dependent on a cell size λ has been obtained. It can be ob-
served that if 0 ≤ ω2 << ω2

∗ then micro-fluctuation amplitude Q2 is strongly
decaying near the boundary x2 = 0. It means that the displacement micro-
fluctuations can be treated as equal to zero outside a certain narrow layer near
boundary x2 = 0. Thus, we have shown that equation (22) of the microscopic
tolerance model obtained in the second step of combined modelling describes
the space-boundary layer phenomena strictly related to the specific form of
boundary conditions imposed on Q2. All the effects mentioned above can be
analysed in the framework of neither the asymptotic models which neglect the
length-scale effect nor the standard combined models for the biperiodic shells
in which unknown fluctuation amplitudes are governed by ordinary differential
equations involving only time derivatives.

3. The possible applications of the combined model proposed here were also
illustrated by the analysis of the problem of wave propagation in the shells
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unbounded in an axial direction. The long waves, related to micro-fluctuation
amplitude Q2(x

2, t) being unknown of microscopic model equation (22), were
studied. It was shown that the micro-periodic heterogeneity of the shells leads
to exponential waves and to dispersion effects, which cannot be analysed in
the framework of the asymptotic models and the standard combined models
for biperiodic shells. Moreover, the new wave propagation speed depending on
the microstructure size has been obtained, cf. formula (34).

5. Final remarks and conclusions

The following remarks and conclusions can be formulated:

� Thin linearly elastic Kirchhoff-Love-type circular cylindrical shells having a
periodic microstructure in circumferential and axial directions (biperiodic shells)
are objects of consideration, cf. Fig.1.

The new averaged general combined asymptotic-tolerance model for the anal-
ysis of selected dynamic problems for the biperiodic cylindrical shells under
consideration was derived in Tomczyk and Litawska [20]. Here, the governing
equations of this model are recalled and applied for investigations of certain
micro-dynamic problems for the shells under consideration. The aforemen-
tioned model equations consist of macroscopic (asymptotic) model equations
(6) for macrodisplacements u0

α(x, t), w
0(x, t), x ∈ Ω, t ∈ I, derived by means

of the consistent asymptotic procedure, cf. [6], and of general microscopic tol-
erance (non-asymptotic) model equations (15), (16) for fluctuation amplitudes
(microscopic variables) Qα(x, t), V (x, t), x ∈ Ω, t ∈ I, formulated by apply-
ing an extended version of the tolerance modelling technique, cf. [16]. This
extended version is based on a new notion of weakly slowly-varying functions.
Macro- and microscopic models are combined together under assumption that
in the framework of the asymptotic model the solutions (9) to the problem
under consideration are known. Contrary to the well-known governing equa-
tions (2) of Kirchhoff-Love theory with highly oscillating, non-continuous and
periodic coefficients, equations of the asymptotic-tolerance model have con-
stant coefficients depending also on a microstructure size. Hence, this model
allows us to describe the effect of a length scale on the dynamic shell be-
haviour. Moreover, the general combined model equations contain a bigger
number of terms depending on a cell size than the known standard combined
model equations presented in [7] and recalled here by means of equations (20),
(21), which were derived applying “classical” concept of the slowly-varying
functions. Thus, from the theoretical results it follows that the general model
allow us to investigate the length-scale effect in more detail. The main ad-
vantage of the proposed model is that it makes it possible to separate the
macroscopic description of some special problems from their microscopic de-
scription. Micro-dynamic behaviour of the shells are described by equations
(18), (19) being independent of solutions (9) obtained in the framework of the
macroscopic model.

� The main aim of this contribution was to study two special micro-dynamic
problems for a certain closed, biperiodically and densely stiffened cylindrical
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shell, cf. Fig. 1. The first of them deals with harmonic micro-vibrations
in axial direction. The second one deals with propagation of the long waves
related to micro-fluctuations of axial displacements. In order to analyse these
problems, the micro-dynamic equations (18) of the general superimposed mi-
croscopic model were applied.

� Some new important results have been obtained analysing the harmonic micro-
vibrations with vibration frequency ω. It was shown that the shape of these
micro-vibrations depends on relations between values of vibration frequency ω
and a certain new additional higher-order free vibration frequency ω∗ depend-
ing on a cell size λ. The micro-vibrations can decay exponentially and very
strongly near the boundary x2 = 0, they can decay linearly, certain values of
ω cause a non-decayed form of micro-vibrations (micro-vibrations oscillate),
for certain values of ω we deal with resonance micro-vibrations. The problem
with strongly decaying micro-vibrations near the boundary x2 = 0 is referred
to the space-boundary-layer phenomena.

� Some new important results have been obtained analysing the long wave
propagation problem related to micro-fluctuations in axial direction. It was
shown that the tolerance-periodic heterogeneity of the shells leads to exponen-
tial waves and to dispersion effects, which cannot be analysed in the framework
of the asymptotic models for periodic shells. Moreover, the new wave propaga-
tion speed depending on the microstructure size has been obtained, cf. formula
(34).

� All the effects mentioned above can be analysed in the framework of neither
the asymptotic models which neglect the length-scale effect nor the standard
combined models for the biperiodic shells in which unknown fluctuation am-
plitudes are governed by ordinary differential equations involving only time
derivatives.

Some other applications of the general combined asymptotic-tolerance model
will be shown in forthcoming papers.
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[3] Woźniak, C. and Wierzbicki, E.: Techniques in thermomechanics of compos-
ite solids. Tolerance averaging versus homogenization, Czȩstochowa University Press,
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